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Abstract
Computational thinking (CT) skills have become increasingly important in modern educa-
tion, as they equip students with critical problem-solving skills applicable across various 
domains. Given the growing emphasis on digital literacy, it is essential to investigate grade- 
and gender-level differences in CT skills among students to support targeted interventions 
and to ensure that all students have equal opportunities to succeed in the digital age. This 
study examined CT skill development among primary school students, taking both grade- 
and gender-level disparities into account. Using quantitative data from a diverse sample of 
517 primary school students, we conducted a comprehensive analysis of their CT scores. 
The results revealed no significant gender differences in CT scores among primary school 
students. However, notable age-related disparities emerged, with CT scores rising as stu-
dents progressed through higher grades. This finding underscores the importance of con-
sidering developmental factors in CT education and highlights the need for age-appropriate 
CT curricula. By investigating both grade- and gender-level differences, this study aims to 
support educators and policymakers in developing more inclusive and effective strategies 
for cultivating CT skills among young learners, thereby preparing them for the challenges 
of the digital age.

Keywords Beginners Computational Thinking Test (BCTt) · Computational thinking 
(CT) · Primary education · Grade-level disparities · Gender differences · CT assessment 
tools

Introduction

In one of the most influential works on computational thinking (CT), Wing (2006) defined 
it as a “universally applicable attitude and skill set everyone, not just computer scientists, 
would be eager to learn and use” (p. 33), as CT enables students to solve problems that 
would otherwise be impossible to solve. Wing (2006) argued that in addition to reading, 
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writing, and arithmetic, every child must be taught CT. As a result, it is crucial to rec-
ognize the value of computing as an interdisciplinary learning tool. However, it is also 
important not to overlook the social and affective components of students’ participation in 
creating every computational artifact (Lodi & Martini, 2021).

Although numerous approaches have been proposed for incorporating CT into edu-
cational curricula, there are fewer suggestions for assessing CT (Babazadeh & Negrini, 
2022), while valid and reliable age-tailored assessment tools must be developed (Poula-
kis & Politis, 2021). Additionally, it is essential to validate gender-fair assessment tools 
to contribute to closing the gender gap that researchers frequently observe in computing 
(Hamamsy et al., 2023). The way in which CT skills corresponds to different grades1 and 
gender is also currently missing from literature (Angeli & Giannakos, 2020). In summary, 
it is critical to examine age and gender disparities in the development of CT skills, to sup-
port focused interventions, and to promote a more fair and inclusive society where every-
one has equal opportunities to prosper in the digital era.

This study aimed to determine if there are developmental and gender-based differences 
in the CT skills of primary school students, and whether these factors interact to influence 
CT skills further. Although some previous studies have examined CT sub-dimensions, the 
present study focuses on overall CT skills to provide a broad understanding of develop-
mental and gender-based differences in Greek primary school students. To explore these 
issues, we analyzed students’ performance based on their grade, which corresponds to “a 
specific stage of instruction in initial education usually covered during an academic year” 
(UNESCO Institute for Statistics, 2012, p. 80). Students in the same grade are usually of 
similar age and each grade represents a distinct stage in primary education with a tailored 
curriculum, which in Greece is reflected in the Information and Communications Technol-
ogy (ICT) curriculum (Institute of Educational Policy, 2022), specifically designed to pro-
gressively build CT skills by introducing increasingly complex CT concepts at each grade 
in alignment with students’ cognitive development. We begin by introducing the concept 
of CT and the proposed methods and tools for its assessment. Afterwards, we present the 
relevant research regarding age and gender differences in the context of CT development. 
Lastly, we present the results and their discussion, as well as our concluding remarks.

Computational thinking

Although CT became popular after Wing’s statements in 2006, it can be traced back to the 
1940s, when Polya (1945) described a four-step process for solving mathematical prob-
lems that shares many characteristics with various proposed CT concepts and practices. 
However, the term CT first appeared in Papert’s (1980) book Mindstorms as a mental skill 
children acquire through programming. Papert also noted that the social and affective com-
ponents of learning are as significant as the technical ones. Following Wing’s statements, a 
broad academic debate began, during which many definitions of CT were proposed.

In their systematic literature review, Tang et al. (2020) noted that there are two main 
approaches to defining CT. The first defines CT in terms of programming and com-
puting concepts, while the second includes competencies needed for acquiring both 

1 The term “grade” in this manuscript can be understood equivalently as “class”, “cohort” or “year”, as per 
the International Standard Classification of Education (ISCED) by UNESCO (2012).
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domain-specific knowledge and general problem-solving skills. Brennan and Resnick 
(2012) proposed a three-dimensional CT model, which served as a foundation for 
future CT models and belongs to the first approach to defining CT. They noted that CT 
is made up of concepts (sequences, loops, parallelisms, events, conditionals, operators, 
and data), practices (being incremental and iterative, testing and debugging, reusing 
and remixing, and abstracting and modularizing), and perspectives (expressing, con-
necting, and questioning). Weintrop et  al. (2016), who also influenced future discus-
sions, defined CT in terms of programming and computing concepts and proposed that 
CT can be divided into four main areas: (a) data practices, (b) modeling and simula-
tion practices, (c) computational problem-solving practices, and (d) systems thinking 
practices.

Among the most dominant models following the second approach, CSTA & ISTE 
(2011) proposed that CT is a problem-solving approach that includes, but is not lim-
ited to, problem formulation in a way that allows us to solve them using computers 
and other tools, logical data organization, abstraction, automation through algorithmic 
thinking, efficient problem solving, and generalization. Several dispositions or atti-
tudes that are crucial CT characteristics promote and improve these problem-solving 
skills across various settings. Selby and Woolard (2013) conducted a literature review, 
which resulted in an operational definition stating that CT is not limited to a problem-
solving approach. Instead, it can be described as a thought process that incorporates 
abstraction, decomposition, algorithms, evaluation, and generalization.

Although there are numerous definitions of CT, it has been widely accepted to 
involve “formulating problems and their solutions in a way that can be effectively exe-
cuted by an information-processing agent” (Wing, 2011), which can be either a human, 
a machine, or a combination of the two, in various fields (Grover & Pea, 2018). A 
recent study by Annamalai et al. (2022) concluded that the most important CT aspects 
are abstraction, decomposition, debugging and evaluation, algorithms, and generaliza-
tion, while CT is a significant skill set that enhances general problem-solving skills.

Despite the proliferation of assessment methods aligning with CT models, there 
is a need for their large-scale validation and application (Cutumisu et  al., 2019), as 
well as their focus on younger students (Poulakis & Politis, 2021). Among the various 
assessment tools, only a few can be used without depending on a programming envi-
ronment. The Computational Thinking Test (CTt) (Román-González, 2015; Román-
González et  al., 2017), despite being designed for students between the ages of 10 
and 16, has attracted researchers’ interest because of its validity and reliability. The 
Beginners Computational Thinking Test (BCTt· Zapata-Cáceres et al., 2020, 2021) was 
designed with CTt as its foundation and adapted for younger students. It comprises 25 
items, divided into six sets, each of which addresses a unique computational concept 
(sequences, simple loops, nested loops, if–then, if–then-else, and while). BCTt is suit-
able for students aged 5 to 10, especially the younger ones among them, and it could 
be used as a pre-test and post-test tool.

The Greek version of BCTt (Vourletsis & Politis, 2025), used in our study, has 
also demonstrated good psychometric properties. In particular, regarding its valid-
ity, a panel of experts agreed on the relevance of its items for assessing CT concepts 
and statistical analyses revealed better model fits for younger students. Furthermore, 
the adapted scale includes items of varying difficulty, has good discriminatory power, 
good internal consistency, and consistent and stable results over 2–3 weeks. Overall, 
the BCTt is a promising tool for assessing CT development in younger primary school 
students.
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Related work

Age and grade differences

The inclusion of CT from early education in modern curricula highlights the impor-
tance of investigating differences in CT skills between students of different grades. Cod-
ing and programming skills are often linked to cognitive maturity (Kim et  al., 2021), 
while Piaget (1964) proposed the order in which children develop their intellectual 
abilities decades before the widespread use of computers in everyday life and educa-
tion. According to Piaget’s theory of cognitive development, children progress through 
four key stages: (a) the sensorimotor stage (0−2 years), where they learn through physi-
cal interaction with their environment, (b) the preoperational stage (2−7 years), char-
acterized by symbolic thinking but limited logical reasoning; the concrete operational 
stage (7−11  years), where children begin to think logically about concrete events but 
have difficulty with abstract ideas, and (c) the formal operational stage (around 11 years 
onward), where abstract and logical reasoning become more fully developed. These 
stages help explain how children’s ability to understand increasingly complex con-
cepts, including those related to CT, is influenced by their cognitive development as 
they mature. In the earlier years of primary education, they are more adept at handling 
simpler tasks, while the abstract reasoning required for more complex concepts, such as 
loops and conditionals, develops more completely in the later years.

Building on Piaget’s framework, research into CT and robotics further supports this 
developmental perspective. For example, the systematic review of robotics construc-
tion kits (RCKs) by Sullivan and Heffernan (2016) highlighted that younger children 
are capable of engaging with fundamental aspects of CT, such as sequencing, through 
manipulative robotic environments. As students progress to upper elementary and mid-
dle school, they demonstrate more advanced cognitive abilities, which enhance their 
programming and engineering knowledge. This development allows older children to 
improve their understanding of more complex CT tasks. Further evidence of devel-
opmental progression is provided by Seiter and Foreman (2013), who introduced the 
Progression of Early Computational Thinking (PECT) Model to assess CT in primary 
grade students, focusing on procedures and algorithms, problem decomposition, paral-
lelization, abstraction, and data representation. Their study, involving Scratch projects 
from students in Grades 1 to 6, indicated that as students advanced in age and grade, 
they demonstrated increased proficiency in tasks like animation, user interaction, and 
the use of more complex design patterns, highlighting the need for age-appropriate CT 
curricula.

The developmental trajectory of CT skills continues to be supported by recent stud-
ies. For instance, An’s (2022) examination of sequencing abilities among 1,234 children 
aged 5 to 7 revealed that the most rapid development occurred between the ages of 5 
and 6, with a less significant improvement from 6 to 7 years. The study also revealed 
that children at the age of 7 demonstrated significantly stronger sequencing skills than 
younger students, emphasizing this period as critical for developing such abilities. Simi-
larly, Relkin et al. (2020) explored the developmental progression of CT in their study 
of 768 first and second graders in a Virginia school district. By using TechCheck, an 
unplugged assessment tool designed to evaluate CT skills in young children aged 5 to 
9, focusing on algorithms, modularity, control structures, representation, hardware/soft-
ware, and debugging, they found that second graders consistently outperformed first 
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graders. Their findings further reinforced the idea of a developmental trajectory, with 
significant improvements in abstract and logical reasoning over time.

Tsarava et  al. (2022) further explored the cognitive foundations of CT in primary 
education, finding that CT skills are differentially influenced by various cognitive abili-
ties across age groups. Their study involving third and fourth graders showed that CT 
was positively associated with numerical abilities, verbal reasoning, and non-verbal 
visuospatial skills. They also observed that while numerical abilities play a more signif-
icant role in CT development during early education, this influence diminishes in later 
stages. Their research emphasizes that CT development in young learners draws on mul-
tiple cognitive abilities, further highlighting the need for age-appropriate educational 
approaches to support CT development.

However, some studies did not find consistent developmental progression across 
all age groups. Jiang and Wong (2021), who examined both developmental and gen-
der differences in CT skills among 197 students aged 9 to 13, noted significant differ-
ences between students in Grade 4 and Grade 6, with older students consistently scoring 
higher than their younger counterparts. In contrast, Atmatzidou and Dimitriadis (2016), 
who explored CT skill development through an educational robotics program involv-
ing 164 junior high and high vocational students and using written and oral assessment 
tools, reported that students reached similar levels of CT skills regardless of age. They 
argued that CT skills may require substantial time to develop properly.

Rijke et  al. (2018) conducted research with 200 primary school students aged 6 to 
12  years, employing an instructional intervention that included unplugged activities. 
Their results indicated that the participants’ age may impact the development of specific 
CT skills. In particular, they found that not all students’ age groups attained the same 
level of abstraction skills, as older students performed better than younger students. 
As students move into later primary and secondary education, researchers offer further 
insights into how CT skills develop across a broader age range. Korucu et  al. (2017) 
investigated CT skill development in 160 secondary school students aged 10 to 14 and 
found differences in CT abilities across grades. Specifically, seventh graders scored 
lower than both sixth and eighth graders, suggesting variability in CT development. 
Similarly, Polat et  al. (2021) implemented a 9-week CT program for 1 h a week with 
328 fifth and sixth-grade students (aged 10–12) in Istanbul. They used the Scratch vis-
ual programming environment and found that sixth graders performed better than fifth 
graders, although the effect size was small. This difference was attributed to the fact that 
the sixth graders participated in more complex Scratch activities than the fifth graders.

In the context of large-scale analyses, Román-González et  al. (2017) used CTt to 
evaluate the CT skills of 1,251 Spanish students in fifth through tenth grade. Statisti-
cally significant differences in scores were observed among students of different grades. 
These differences spanned all possible pairs between grades, supporting the authors’ 
assumption that CT, as a problem-solving ability, is linked to students’ cognitive 
development.

Finally, the findings by Sullivan and Bers (2016) suggest that even very young learn-
ers can develop foundational CT skills. More specifically, they explored the develop-
ment of CT skills among 45 students from kindergarten to second grade (aged 4 to 7) in 
an eight-week robotics and programming curriculum. They found that older students did 
not consistently outperform younger students across various activities. However, their 
conclusion must be considered with caution due to the small sample size and underrep-
resentation of second graders in their study.
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Gender disparities

Studies exploring the impact of gender on the development of CT skills in students have 
produced varying outcomes. Research examining younger students tends to show mini-
mal or no gender differences in CT skills. Del Olmo-Muñoz et  al. (2020) suggested 
that gender did not significantly affect the development of CT skills, but noted its influ-
ence on motivation toward CT instruction. Their study involved 84 s-grade students in 
a quasi-experimental study with a control and an experimental group, using unplugged 
and plugged-in instruction respectively, followed by plugged-in instruction for both 
groups. Relkin et al. (2020), in a study of 768 first- and second-grade students using the 
TechCheck assessment tool, also found no significant gender-based disparities in CT 
skills. In contrast, An (2022) examined 1,234 children aged 5 to 7 and found significant 
gender differences in sequencing ability, with girls demonstrating higher sequencing 
abilities than boys. Sullivan and Bers (2013) worked with 53 kindergarten students on 
a six-lesson robotics program and found few statistically significant gender differences, 
except for boys scoring higher in tasks like the proper attachment of robotic parts and 
the concept of conditionals. Subsequent pilot research by the same authors (Sullivan & 
Bers, 2016) with 45 students from ages 4 to 7 reported no statistically significant dif-
ferences between boys and girls regarding robotics and simple programming tasks but 
found that boys outperformed girls in more advanced tasks like repeat loops with sensor 
parameters.

Additional research has explored gender differences in CT through the use of robot-
ics and programming environments. Papadakis et al. (2016), working with kindergarten 
students using ScratchJr, found no significant gender-related impact on CT-related tasks. 
Angeli and Valanides (2020) emphasized the importance of designing gender-inclusive 
CT content for young learners. Their study, involving 50 kindergarten children working 
with Bee-Bot, found no significant gender differences in programming skills. However, 
Angeli and Georgiou (2023) identified gender effects in CT dimensions like sequences 
and decomposition among 170 children aged 5 to 6.

As students progress to secondary education, gender-based disparities in CT skills 
may become more pronounced (Ardito et  al., 2020). For example, Polat et  al. (2021) 
studied 328 fifth and sixth grade (aged 10–12) students and discovered that boys outper-
formed girls in CT skills. However, the effect size was small, suggesting that the gender 
gap may be narrowing. Differences in some CT subscales are attributed to boys’ greater 
interest in technical issues at younger ages. Mouza et  al. (2020), after analyzing both 
quantitative and qualitative data from 238 students in Grades 4 to 6 over the course of 
2.5 years, observed differences in CT outcomes between genders at the beginning and 
end of an after-school CT program. They attributed this difference to the boys’ possible 
greater prior experience with computers, referred to as the “experience gap” (Mouza 
et al., 2020, p. 1050), but no significant differences in gain scores were found between 
boys and girls. On the other hand, Atmatzidou and Dimitriadis (2016) found that males 
and females have the same level of CT skills. However, in some cases, girls seemed to 
need additional practice to attain the same level of skill as boys. Similarly, Korucu et al. 
(2017) found no statistically significant differences in CT skills between 160 students 
aged 10 to 14, nor did Alsancak (2020) between 722 secondary school male and female 
students.

Large-scale analyses have also contributed to understanding gender differences in CT 
skills. Hubwieser and Muhling (2015) analyzed the data from 38,873 German Bebras 
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CT contest participants, including students aged 10 to 19, and concluded that boys gen-
erally performed better than girls. Román-González et  al. (2017) revealed statistically 
significant differences in scores between boys and girls in fifth to tenth grades, albeit 
with a small effect size. The mean scores were higher in the group of boys in the sev-
enth grade or above. The authors noted that as the grades increased, a gender gap was 
also developing regarding the CT skills measured by CTt.

The relationship between age and gender adds another layer of complexity to the 
development of CT skills. The results of the study conducted by Jiang and Wong (2021), 
who investigated both age and gender differences in CT skills of 197 students aged 9 to 
13 years, revealed that throughout the development of CT skills, the participants’ gender is 
not an influential factor. However, Rijke et al. (2018) discovered that after 9.5 years, female 
students outperformed males in abstraction tasks, indicating that gender disparities may 
emerge in specific CT dimensions as students grow older.

Methods

Research questions

Our study aimed to investigate how CT skills evolve as students progress through the early 
stages of primary education, specifically focusing on Grades 1, 2, and 3. We examined the 
potential influence of gender on this developmental trajectory and explored any possible 
interaction between grade and gender in shaping CT skills. We utilized the data collected 
during the psychometric validation of the Greek adaptation of the BCTt (Vourletsis & Poli-
tis, 2025), a process that demonstrated its reliability and validity as a tool for assessing CT 
skills among students in Grades 1 through 3.

In the Greek primary education system, the ICT curriculum (Institute of Educational 
Policy, 2022) is designed to progressively build CT skills as students develop cognitively. 
The curriculum for Grade 1 focuses on foundational concepts, such as basic algorithms and 
sequences related to real-life scenarios. By Grade 2, students engage with more advanced 
topics such as loops and algorithmic sequences, while Grade 3 introduces more complex 
skills, including debugging, trial-and-error approaches, and problem decomposition. This 
structured progression is expected to influence the development of CT skills across these 
grades, and grades were treated as an independent variable in the data analysis, reflect-
ing distinct stages of cognitive and CT skill development rather than merely time spent in 
school.

In this context, our study addressed the following research objectives:

(1) Do students in Grades 1, 2, and 3 have different levels of CT skills?
(2) Do male and female students in Grades 1, 2, and 3 have different levels of CT skills?
(3) How do grade and gender collectively influence the CT skills of students in Grades 1, 

2, and 3?

By addressing key research questions, this study provided valuable insights into the 
development of CT skills among young learners and enhanced our understanding of the 
potential factors that can influence these skills, which are regarded as essential to meet the 
challenges of the twenty-first century.
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Participants

We employed a two-stage probability sampling approach to obtain a representative sam-
ple of primary school students aged 6 to 10 (grades 1 to 4). The chosen grades were 
strategically selected to examine early CT development but were also aligned with our 
data collection tool (BCTt) which is specifically designed and validated for use with stu-
dents aged 5 to 10. During the first stage of the sampling approach, we implemented a 
probability proportional to size (PPS) random sampling technique. This approach can be 
useful with sampling units of different sizes, where the size of each unit corresponds to 
its inclusion probability (Cheung, 2014). We began by sorting the 13 Regional Directo-
rates of Primary and Secondary Education in Greece according to the number of schools 
they supervise and randomly selecting the Attica Regional Directorate among them. 
Following the selection of the Regional Directorate, we proceeded to the second stage 
of the sampling process, and we employed a simple random sampling (SRS) approach, 
in which the sampling units are selected randomly with equal probability from the popu-
lation (Singh, 2003). As a result, we randomly selected five schools from the list of pri-
mary schools supervised by the Attica Regional Directorate.

To determine the appropriate sample size, we followed recommendations from the 
literature. We need to note that there is no absolute consensus regarding the sample 
size required for factor analysis and scale validation. Sample sizes of at least 200–300 
participants, or 10 participants per scale item, are recommended for factor analysis 
(Boateng et  al., 2018). Additionally, Tsang et  al. (2017) suggest that a respondent-to-
item ratio between 5:1 and 30:1 is generally acceptable. Given that our 25-item BCTt 
scale required a sufficient sample size for rigorous psychometric analysis, we aimed to 
adhere to established guidelines suggesting a respondent-to-item ratio between 5:1 and 
30:1. Furthermore, while ensuring that the sample size was sufficient for factor analy-
sis during the psychometric validation, we calculated the Kaiser–Meyer–Olkin (KMO) 
Measure of Sampling Adequacy (Arafat et al., 2016).

Initially, our initial sample comprised 673 students: 294 males and 379 females. 
However, we observed a ceiling effect during the analysis of student scores by grade, 
particularly among Grade 4 students, as approximately 17% of them achieved the high-
est score on the scale. This percentage exceeded the common threshold of 15% of 
respondents achieving the lowest or highest possible score for floor and ceiling effect 
respectively (Terwee et al., 2007), causing us to exclude the Grade 4 students (66 males 
and 90 females) from the final sample. The final sample comprised 517 students (see 
Table 1).

Table 1  Student distribution by 
grade and gender

Grade Males Females Total % Males % Females

1 63 97 160 39.4 60.6
2 77 95 172 44.8 55.2
3 88 97 185 47.6 52.4
Total 228 289 517 44.1 55.9
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Data collection and analysis

Data collection adhered to ethical guidelines and took place in May and June 2022. 
To ensure consistent administration and minimize potential biases, the author was the 
sole administrator for the test. The author administered the BCTt scale to the participat-
ing students, providing detailed instructions and examples for each concept included 
in the scale, as outlined in the original BCTt protocol. Digital presentations were used 
to deliver instructions and examples to all students, aiming to provide a standardized 
learning environment. Students were allowed to ask questions during the test, while 
the author provided individual explanations focusing solely on the mechanics of the 
questions, without offering hints or clues about the correct answers. The 25-item scale 
assessed students’ CT skills in sequences, loops (simple and nested), and conditionals 
(if–then, if–then-else, and while). Students required 35 (Grade 3) to 55 min (Grades 1 
and 2) to complete the test. Immediately afterwards, we used a spreadsheet and coded 
the students’ responses with a value of 1 for the correct answers and a value of 0 for the 
wrong answers.

To address our research questions, we employed a two-way ANOVA and a multiple 
linear regression analysis. The two-way ANOVA is frequently used to investigate pos-
sible interaction effects between two independent variables on a continuous dependent 
variable (Kim, 2014). We used it to investigate the possible interaction effect between 
students’ grades and gender (independent variables) on their CT score (dependent vari-
able) but also the main effects, specifically how each factor (grade and gender) indepen-
dently influenced CT scores. Before conducting the test, we ensured that the required 
assumptions were met: the CT score was measured continuously and the independent 
variables included at least two independent groups. Furthermore, there were no signifi-
cant outliers and the distributions of the scores were approximately normal for each cell 
(including grade and gender combinations). The assumption of homogeneity of vari-
ances was violated, but the ratio of the largest to the smallest group variance was less 
than 3, which permits the use of two-way ANOVA (Jaccard, 1998). Finally, we calcu-
lated the partial eta squared (ηp

2) coefficient and reported the effect size, which was 
interpreted similarly to the eta squared (η2) coefficient. Cohen (1977) stated that a small 
effect size typically falls in the range of η2 < 0.06, a medium effect size is observed 
when 0.06 ≤ η2 < 0.14, and a large effect size is evident when η2 ≥ 0.14.

To further explore the potential interaction between grade and gender on CT skills, 
we conducted a multiple linear regression analysis. This analysis offered several addi-
tional benefits, such as the quantification of effects, thus indicating how much CT scores 
change with each unit increase in grade and whether gender has a measurable impact 
(Mason & Perreault, 1991). Additionally, it provided insights into the proportion of 
variance in CT scores explained by grade and gender, and evaluated the overall fit of 
the model. To conduct the analysis, we ensured that the required assumptions regard-
ing the study design were met. The CT score (dependent variable) was measured at the 
continuous level, while the independent variables (grade and gender) were treated as 
nominal variables. To assess the independence of residuals, we calculated a Durbin-
Watson statistic of 1.64, which suggests that the independence assumption was met, as a 
value between 1.5 and 2.5, ideally close to 2.0, indicates independence (Turner, 2019). 
We also found a linear relationship between the dependent variable and each of our 
independent variables, and also between the dependent variable and the independent 
variables collectively, through the visual inspection of the partial regression plots and 



 I. Vourletsis 

the scatterplot of studentized residuals against predicted values, respectively. The lat-
ter was also used to inspect homoscedasticity of residuals. Afterwards, we ensured that 
our independent values were not highly correlated with each other (multicollinearity), 
there were no significant outliers, high leverage points or highly influential points, and 
that the residuals (errors) were approximately normally distributed (Sarstedt & Mooi, 
2019). Finally, we calculated the multiple correlation coefficient (R), the percentage of 
variance explained  (R2 and adjusted  R2), and the statistical significance of the overall 
model. The value of R ranges from 0 to 1, where higher values indicate higher predict-
ability of the dependent variable from the independent variables, while the value of  R2 
is between 0.02 and 0.13 for a weak effect size, between 0.13 and 0.26 for a moderate 
and greater than 0.26 for a large effect size (Cohen, 1977). According to Sarstedt and 
Mooi (2019), values of 0.10 are normal in cross-sectional data in exploratory research.

Results

Grade‑level differences

From a developmental perspective, we examined the main effect of grade on CT scores, 
conducting a two-way ANOVA using unweighted marginal means, given the unbal-
anced design of the study with differing numbers of students across grades. The analysis 
revealed a statistically significant main effect of grade on CT scores, F(2, 511) = 21.127, 
p < .001, ηp

2 = 0.08. The effect size was moderate, indicating that differences in CT 
scores among students of different grade are meaningful. The unweighted marginal 
means for CT scores were 12.47 (SE = 0.465) for Grade 1, 13.50 (SE = 0.441) for Grade 
2, and 16.36 (SE = 0.423) for Grade 3. These means (see Table  2) represent the esti-
mated average CT scores for each grade group.

All pairwise comparisons were conducted (see Table  3), with p-values being Bon-
ferroni-adjusted. Grade 3 students were associated with a mean CT score of 3.88, 95% 
CI [2.37, 5.39] points higher than that of Grade 1 students, p < .001, and 2.86, 95% CI 
[1.39, 4.33] points higher than that of Grade 2 students, p < .001. These findings indi-
cate a statistically significant increase in CT scores as students advance from Grade 1 to 
Grade 3.

Table 2  Unweighted marginal 
means, standard errors, and 
95% confidence intervals for CT 
scores by grade

Estimates

Dependent variable: CT score

Grade Mean Std. error 95% Confidence interval

Lower bound Upper bound

1 12.47 .465 11.561 13.388
2 13.50 .441 12.630 14.362
3 16.36 .423 15.524 17.186
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Gender disparities

We also conducted the two-way ANOVA using unweighted marginal means, to examine 
the main effect of gender on CT scores. The analysis revealed that there was no statistically 
significant main effect of gender on CT scores, F(1, 511) = 0.149, p = .700, ηp

2 = 0.00, indi-
cating that CT scores did not differ significantly between male (M = 14.21, SE = 0.384) and 
female students (M = 14.01, SE = 0.338). The value of the effect size indicated that there 
was no meaningful difference in CT scores between male and female primary school stu-
dents. Overall, these results suggest that, when controlling for grade, gender does not have 
a meaningful impact on the CT skills of students in Grades 1, 2, and 3.

Collective influence of grade and gender

First, we conducted a two-way ANOVA to examine the effects of grade and gender on the 
CT skills of students. We found that the interaction effect between grade and gender on CT 
score was not statistically significant, F(2, 511) = 0.008, p = .992, ηp

2 = 0.00). The effect 
size for the interaction effect is negligible, indicating that the interaction between grade 
and gender has no practical significance in explaining the variation in CT scores among 
students of different grade and gender. Overall, this suggests that the effect of grade on CT 
skills is consistent across both genders, without any significant interaction (Fig. 1).

While the two-way ANOVA allowed us to assess the effects of grade and gender on 
the students’ CT skills, the multiple regression analysis provided a quantification of the 
independent variables’ effects on the dependent variable and insights into the overall fit 
of the model. Using grade and gender as predictors of CT scores, the regression model 
was statistically significant, F (2, 514) = 20.381, p < .001, indicating that grade and gen-
der together significantly predict the variance in CT scores. The Multiple Correlation 
Coefficient (R) value was 0.271, reflecting a weak correlation between the observed 
and predicted CT scores, thus a weak linear association between the dependent variable 
and the independent variables. The  R2 value was 0.073, indicating that approximately 

Table 3  Pairwise comparisons of CT scores across grades with bonferroni adjustment

Based on estimated marginal means
* The mean difference is significant at the .05 level
b Adjustment for multiple comparisons: Bonferroni

Pairwise comparisons

Dependent variable: CT score

(I) Grade (J) Grade Mean difference (I-J) Std. error Sigb 95% Confidence interval for 
 differenceb

Lower bound Upper bound

1 2 − 1.022 .641 .334 − 2.561 .517
3 − 3.881* .629  < .001 − 5.391 − 2.371

2 1 1.022 .641 .334 − .517 2.561
3 − 2.859* .611  < .001 − 4.326 − 1.392

3 1 3.881* .629  < .001 2.371 5.391
2 2.859* .611  < .001 1.392 4.326
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7.3% of the variance in CT scores can be explained by the independent variables. The 
Adjusted  R2 value was 0.070, indicating that approximately 7.0% of the variance in CT 
scores is explained by the predictors (grade and gender), after adjusting for the number 
of predictors in the model. This suggests that, although the model explains some of the 
variance in CT scores, a substantial proportion remains unexplained, possibly due to 
other factors not included in the model. The unstandardized coefficient (B) for grade 
was significant with value 1.968, suggesting that for each additional grade level, the 
CT score increases by approximately 1.968, holding gender constant. Additional details, 
such as the standard errors and 95% confidence intervals for the regression coefficients, 
are provided in Tables 4 and 5. 

Fig. 1  Clustered Bar (Mean) of CT scores by grade and gender

Table 4  Unweighted marginal 
means, standard errors, and 
95% confidence intervals for CT 
scores by gender

Estimates

Dependent variable: CT score

Gender Mean Std. error 95% Confidence interval

Lower bound Upper bound

Male 14.21 .384 13.45 14.96
Female 14.01 .338 13.35 14.67
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Discussion

Our study investigated grade-level differences and gender disparities in CT skills among 
primary school students. Although the literature highlights differences in sub-dimensions 
of CT, the current study took a holistic approach, focusing on overall CT skills. Our find-
ings included significant differences in CT scores among students in different primary 
school grades, strongly supporting the notion of a developmental trajectory in CT skills. 
As we mentioned, the Greek ICT curriculum is structured to progressively build CT skills 
from foundational concepts in Grade 1 to more advanced skills in Grade 3, which aligns 
with the observed developmental trajectory. These findings also align with Piaget’s (1964) 
theory of cognitive development, which suggests that as children advance through distinct 
stages of cognitive maturity, their ability to understand increasingly complex concepts also 
improves. As students progressed from Grade 1, representing the initial stage of primary 
school, to Grade 3, there was a statistically significant increase in mean CT scores. Grade 3 
students exhibited the highest CT scores, with a substantial difference compared to Grade 1 
and Grade 2 students.

According to Piaget’s (1964) theory, younger students in Grade 1 may still be in the late 
preoperational or early concrete operational stage, where they can think logically about 
concrete events but have difficulties with abstract reasoning. By Grade 3, children have 
typically reached the concrete operational stage, which allows for improved logical think-
ing and handling of more complex CT tasks. Our results support the notion that as students 
advance in their primary school education, there is a noticeable improvement in their CT 
skills, as found by other researchers (An, 2022; Jiang & Wong, 2021; Polat et al., 2021; 
Relkin et al., 2020; Rijke et al., 2018). The effect size was moderate, underscoring mean-
ingful grade-related differences. Overall, our findings are consistent with the idea that cog-
nitive maturity contributes to the progression of CT skills, as proposed by Piaget (1964) 
and supported by educational research (Román-González et al., 2017; Seiter & Foreman, 
2013).

It is noteworthy that the curriculum for ICT in Greece aligns with the observed grade-level 
differences in CT skills. The curriculum emphasizes deeper modelling and more complex CT 
skills in Grade 3 compared to the foundational skills taught in Grades 1 and 2. This alignment 
between curriculum complexity and developmental stages might contribute to the observed 
increase in CT scores between Grades 2 and 3. Students in Grade 3, exposed to more advanced 
CT concepts, might experience a greater developmental leap in their CT skills compared to 

Table 5  Multiple regression 
results for CT scores

Model = “Enter” method in SPSS Statistics, B = unstandardized regres-
sion coefficient, CI = confidence interval, IL = lower limit, UL = upper 
limit, SE B = standard error of the coefficient, β = standardized coeffi-
cient, R2 = coefficient of determination, ΔR2 = adjusted R2

* p < .001

CT score B 95% CI for B SE B β R2 ΔR2

LL UL

Model .07 .07
Constant 10.442* 8.32 12.57 1.08
Grade 1.968* 1.36 2.58 .31 .27
Gender − .183 − 1.19 .82 .51 − .02
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the foundational skills learned in Grades 1 and 2. This idea is further supported by Tsarava 
et al. (2022), who found that CT skills are differentially influenced by various cognitive abili-
ties, including numerical, verbal, and visuospatial reasoning, which develop progressively as 
children grow older. Beyond curriculum and individual variations, other factors not directly 
measured in this study might also influence CT development.

Overall, the grade-level differences observed in our study emphasized the importance of 
considering students’ educational stages when assessing and fostering CT skills. As CT skills 
become increasingly integral to modern curricula, recognizing these grade-related disparities 
is essential for tailoring educational strategies to promote CT skill development effectively. 
Future research could use a continuous measure of age across a broader age range, possibly 
allowing for a more comprehensive examination of this developmental trajectory and com-
parisons between primary and secondary school students.

In the context of investigating gender disparities in CT skills among primary school stu-
dents, our study provided findings that both align with and diverge from existing literature. 
Our findings did not reveal significant gender differences in CT scores among primary school 
students. This result is consistent with those of prior research regarding kindergarten (Angeli 
& Valanides, 2020; Papadakis et al., 2016) and older students (Alsancak, 2020; Del Olmo-
Muñoz et al., 2020). However, many studies that found gender disparities in kindergarten and 
primary school levels revealed that either the effect size was small (Polat et al., 2021; Román-
González et al., 2017) or the disparities regarded specific or advanced CT skills (Sullivan & 
Bers, 2013, 2016). In conclusion, our findings contribute to the ongoing discourse on gender 
disparities in CT skills among primary school students and support the notion of the narrow-
ing of the gender gap. Furthermore, we emphasize the need for continued exploration of gen-
der-related differences in CT skills, considering the potential influence of various factors such 
as age, educational context, and the specific CT skills being assessed.

Our study also contributes to the limited literature on grade-gender interaction in CT skill 
development among primary school students. We found no significant interaction between 
grade and gender in CT skill development and our multiple regression analysis indicated that 
grade and gender together predict the variance in CT scores, albeit weakly. Grade had a sig-
nificant impact, with older students showing higher CT scores, while gender had no practical 
effect on CT scores, aligning with some literature (Jiang & Wong, 2021), but differing from 
Rijke et al. (2018), who found age-related gender differences in specific CT skills after the age 
of 9.5 years.

Finally, our results have implications for educational strategies and interventions aimed at 
enhancing CT skills across different grades. However, it is crucial to acknowledge the cross-
sectional nature of our study, which may have restricted our ability to detect subtle effects. 
Moreover, our data came from multiple schools and classrooms, introducing potential vari-
ance due to differences in teaching methods and classroom environments. A hierarchical 
(multi-level) linear regression could account for this nested structure, but our sample size did 
not meet the required criteria for such an analysis. Future research should aim to include a 
larger sample size and utilize hierarchical models to better understand the impact of classroom 
and school-level differences on CT skills.
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Conclusions

In this study, our primary aim was to investigate age- and gender-related disparities in CT 
skills among primary school students. Regarding age-related differences, our study found 
a significant increase in CT scores as students progressed from lower to higher grades, 
reflecting the cognitive growth that allows them to handle more complex computational 
tasks. This finding aligns with a developmental perspective and is consistent with prior 
research, suggesting that CT skills develop with cognitive maturity and educational 
advancement. Gender differences, on the other hand, were not significant in our findings, 
aligning with previous research on both younger and older students, indicating that gen-
der disparities in CT skills may not be a prominent issue in primary education. However, 
gender-related variations in CT skills frequently depend on the specific skills assessed and 
the age groups studied.

In conclusion, our study underscored the importance of considering both age- and gen-
der-related factors in understanding CT skill development among primary school students. 
While age-related improvements in CT skills highlight the need for strategies tailored to 
students’ developmental stages, gender disparities may not be a significant concern at this 
level. This research contributes to the ongoing dialogue on CT skill development, offer-
ing insights that can guide more inclusive and effective educational approaches in primary 
schools. However, it is important to note that the cross-sectional nature of this study limits 
the ability to infer causality and the sample characteristics may affect the generalizability 
of the findings. Data were also collected across multiple schools and classrooms, limiting 
the use of a multilevel model. Future research could further investigate the relationship 
between gender, age, and CT skills, considering additional contextual factors and individ-
ual differences among students. By addressing them, educators and policymakers could 
possibly better support the cultivation of CT skills in primary school students, thus prepar-
ing them for success in an increasingly digital and complex world.
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